STEP MATHEMATICS 1

2019 Mark Scheme

1 Eqn. of line is $y-k=-\tan \theta(x-1)$ or $y+x \tan \theta=k+\tan \theta$
Eqn. of line found with substn. of $y=0, x=0$ in turn
M1
A1 A1
(i) $A=\frac{1}{2}(O X)(O Y)=\frac{1}{2}(1+k \cot \theta)(k+\tan \theta)$

$$
\begin{aligned}
& \quad=\frac{1}{2}\left(k^{2} \cot \theta+2 k+\tan \theta\right)=\frac{1}{2 \tan \theta}(k+\tan \theta)^{2} \\
& \begin{aligned}
& \frac{\mathrm{d} A}{\mathrm{~d} \theta}= \frac{1}{2}\left(-k^{2} \operatorname{cosec}^{2} \theta+\sec ^{2} \theta\right) \\
& \text { or } \begin{aligned}
\frac{\mathrm{d} A}{\mathrm{~d} \theta} & =\frac{1}{2 \tan \theta} 2(k+\tan \theta) \sec ^{2} \theta-\frac{1}{2 \tan ^{2} \theta} \sec ^{2} \theta(k+\tan \theta)^{2} \\
& =\frac{(k+\tan \theta) \sec ^{2} \theta}{2 \tan ^{2} \theta}\{2 \tan \theta-(k+\tan \theta)\}=\frac{\sec ^{2} \theta(\tan \theta+k)(\tan \theta-k)}{2 \tan ^{2} \theta} \\
& =0 \text { when f1 for the differentiation }
\end{aligned} \\
& \text { M1 derivate set }=0 \text { and solved }
\end{aligned}
\end{aligned}
$$

Either $\tan \theta=-k(\Rightarrow A=0$, but rejected $\operatorname{since} \tan \theta>0$ in given region $)$
(Not necessary to mention this explicitly)
or $\tan \theta=k \Rightarrow A=2 k$
A1
5
(ii) $X Y=1+k \cot \theta+k+\tan \theta+\sqrt{(1+k \cot \theta)^{2}+(k+\tan \theta)^{2}}$

M1 for attempt at $X Y$

$$
=1+k \cot \theta+k+\tan \theta+(k+\tan \theta) \sqrt{\cot ^{2} \theta+1}
$$

NB $X Y \sin \theta=k+\tan \theta$ (e.g.) gives $X Y$ without distance formula
$L=O X+O Y+X Y=1+\frac{k}{\tan \theta}+k+\tan \theta+(k \operatorname{cosec} \theta+\sec \theta)$
Use of relevant trig. identity to find $X Y$ without square-root and with all three sides involved (No need to justify taking the +ve sq-rt. since given $0<\theta<\frac{1}{2} \pi$)

$$
L=1+\tan \theta+\sec \theta+k(1+\cot \theta+\operatorname{cosec} \theta) \quad \text { A1 legitimately }(\mathbf{A G})
$$

$$
\begin{aligned}
\frac{\mathrm{d} L}{\mathrm{~d} \theta}=k\left(-\operatorname{cosec}^{2} \theta\right. & -\operatorname{cosec} \theta \cot \theta)+\left(\sec ^{2} \theta+\sec \theta \tan \theta\right) & & \text { M1 } \\
=0 \text { when } k & =\frac{\sec \theta(\sec \theta+\tan \theta)}{\operatorname{cosec} \theta(\operatorname{cosec} \theta+\cot \theta)} & & \text { A1 } \\
& =\frac{\frac{1}{c}\left(\frac{1}{c}+\frac{s}{c}\right)}{\frac{1}{s}\left(\frac{1}{s}+\frac{c}{s}\right)}=\frac{\frac{1}{c^{2}}(1+s)}{\frac{1}{s^{2}}(1+c)}=\frac{s^{2}(1+s)}{c^{2}(1+c)} & & \text { M1 trig. method for getting } k \\
& =\frac{(1-c)(1+c)(1+s)}{(1-s)(1+s)(1+c)} & & \text { M1 use of } c^{2}+s^{2}=1 \text { etc. } \\
& =\frac{1-c}{1-s} & & \text { A1 legitimately (AG) }
\end{aligned}
$$

Allow the final 3 marks for using the given answer to verify that $\frac{\mathrm{d} L}{\mathrm{~d} \theta}=0$ (provided that $\theta=\alpha$ used)

Then $L_{\min }=\left(\frac{1-c}{1-s}+\frac{s}{c}\right)\left(1+\frac{c}{s}+\frac{1}{s}\right)$
Must use correct (given) expression for L

$$
\begin{aligned}
& =\left(\frac{c-c^{2}+s-s^{2}}{c(1-s)}\right)\left(\frac{c+s+1}{s}\right) \\
& =\left(\frac{c+s-1}{c(1-s)}\right)\left(\frac{c+s+1}{s}\right) \\
& \quad=\frac{2 c s}{c s(1-s)}=\frac{2}{1-\sin \alpha}
\end{aligned}
$$

M1 substituting back

M1 common denominators

M1 for dealing with numerator $(c+s)^{2}-1=c^{2}+s^{2}+2 c s-1$ A1 final answer (exactly this)
$2 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d}}{\mathrm{d} t}\left(2 t^{3}\right)}{\frac{\mathrm{d}}{\mathrm{d} t}\left(3 t^{2}\right)}=\frac{6 t^{2}}{6 t}=t$ so grad. tgt. at $P\left(3 p^{2}, 2 p^{3}\right)$ is $p \quad$ M1 A1
Eqn. tgt. at P is then $y-2 p^{3}=p\left(x-3 p^{2}\right)$ i.e. $y=p x-p^{3}$ M1 A1 legitimately (AG)
$y=p x-p^{3}$ meets $y=q x-q^{3}$ when $p x-p^{3}=q x-q^{3} \Rightarrow(p-q) x=\left(p^{3}-q^{3}\right)$
M1 equating y 's and rearranging for x
and since $p \neq q, x=p^{2}+p q+q^{2}, y=p q(p+q) \quad$ A1 A1 x, y must be simplified
Tgts. perpr. iff $p q=-1 \Rightarrow u=p-\frac{1}{p}, u^{2}=p^{2}+\frac{1}{p^{2}}-2$ M1 A1 seen or implied
and $P_{1}=\left(p^{2}+\frac{1}{p^{2}}-1,-\left[p-\frac{1}{p}\right]\right)=\left(u^{2}+1,-u\right) \quad$ A1 (AG) legitimately

EITHER $x=y^{2}+1$ meets $\frac{x^{3}}{27}=\frac{y^{2}}{4}$ OR $\left(\frac{u^{2}+1}{3}\right)^{3}=t^{6}=\left(\frac{-u}{2}\right)^{2}$ M1
when

$$
\begin{gathered}
4\left(y^{2}+1\right)^{3}=27 y^{2} \quad 4\left(u^{2}+1\right)^{3}=27 u^{2} \\
4\left(v^{6}+3 v^{4}+3 v^{2}+1\right)=27 v^{2} \quad(v=u \text { or } y)
\end{gathered}
$$

Use of cubic expansion, incl. 1-3-3-1 coefficients M1

$$
\begin{aligned}
4 v^{6}+12 v^{4}-15 v^{2}+4 & =0 & & \\
\left(v^{2}+4\right)\left(4 v^{4}-4 v^{2}+1\right) & =0 & & \text { M1 attempt to find a factor } \\
\left(v^{2}+4\right)\left(2 v^{2}-1\right)^{2} & =0 & & \text { A1 complete factorisation }
\end{aligned}
$$

$v^{2} \neq-4 \Rightarrow y^{2}=\frac{1}{2},\left(\right.$ OR via $\left.u=\mp \frac{1}{\sqrt{2}}, t= \pm \frac{1}{\sqrt{2}}\right) \quad y= \pm \frac{1}{\sqrt{2}}, x=\frac{3}{2}$
One for each (cartesian) coordinate A1 A1

ALT.

$$
\begin{aligned}
u^{2}+1=3 t^{2} \text { and }-u=2 t^{3} \Rightarrow & 4 t^{6}-3 t^{2}+1=0 \\
& \Rightarrow\left(t^{2}+1\right)\left(2 t^{2}-1\right)^{2}=0 \\
\Rightarrow t= \pm \frac{1}{\sqrt{2}} & y= \pm \frac{1}{\sqrt{2}}, x=\frac{3}{2}
\end{aligned}
$$

M1 A1 Eliminating u
M1 A1 attempt to factorise; correct A1 A1

Graphs:

C is a semi-cubical parabola with a cusp at O

B1
B1 (* apparently, here)
B1
B1
\widetilde{C} is a \subset-shaped parabola with vertex at $(1,0)$ *
Curves meet tangentially
Key points noted or sketched, esp. $(1,0)$ and contacts at $x=\frac{3}{2}$
(Withhold final mark if unclear which curve is which)

3 (i) $I=\int_{0}^{\pi / 4} \frac{1}{1+\sin x} \mathrm{~d} x=\int_{0}^{\pi / 4} \frac{1-\sin x}{\cos ^{2} x} \mathrm{~d} x=\int_{0}^{\pi / 4} \sec ^{2} x \mathrm{~d} x-\int_{0}^{\pi / 4} \frac{\sin x}{\cos ^{2} x} \mathrm{~d} x$
M1 use of $1-s^{2}=c^{2}$ and splitting into two integrals
Now $\int_{0}^{\pi / 4} \sec ^{2} x \mathrm{~d} x=[\tan x]_{0}^{\frac{1}{4} \pi}=1$
B1
and $\int_{0}^{\pi / 4} \frac{\sin x}{\cos ^{2} x} \mathrm{~d} x=\int_{1}^{1 / \sqrt{2}} \frac{-1}{c^{2}} \mathrm{~d} c \quad$ using substn. $c=\cos x, \mathrm{~d} c=-\sin x \mathrm{~d} x$ etc.
M1 (or by "recognition")

$$
=\left[\frac{1}{c}\right] \frac{\frac{1}{\sqrt{2}}}{1}=\sqrt{2}-1
$$

A1

OR via $\int \frac{\sin x}{\cos ^{2} x} \mathrm{~d} x=\int \sec x \tan x \mathrm{~d} x=\sec x$ (M1 A1)
so that $I=2-\sqrt{2}$
A1 cao
(ii) $\int_{\pi / 4}^{\pi / 3} \frac{1}{1+\sec x} \mathrm{~d} x=\int_{\pi / 4}^{\pi / 3} \frac{\sec x-1}{\tan ^{2} x} \mathrm{~d} x$

M1 use of initial technique
$=\int_{\pi / 4}^{\pi / 3} \frac{\cos x-\cos ^{2} x}{\sin ^{2} x} \mathrm{~d} x=\int_{\pi / 4}^{\pi / 3} \frac{\cos x}{\sin ^{2} x} \mathrm{~d} x-\int_{\pi / 4}^{\pi / 3} \cot ^{2} x \mathrm{~d} x$ M1 split appropriately
$=\int_{\sqrt{2} / 2}^{\sqrt{3} / 2} \frac{1}{s^{2}} \mathrm{~d} s-\int_{\pi / 4}^{\pi / 3}\left(\operatorname{cosec}^{2} x-1\right) \mathrm{d} x$
M1 use of relevant trig. identity

NB $\int \frac{\cos x}{\sin ^{2} x} \mathrm{~d} x=\int \operatorname{cosec} x \cot x \mathrm{~d} x=-\operatorname{cosec} x$
$=\left[\frac{-1}{s}\right]_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}}+[\cot x+x]_{\frac{1}{4} \pi}^{\frac{1}{3} \pi}$
$=\left(-\frac{2}{\sqrt{3}}+\frac{2}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{3}}+\frac{\pi}{3}-1-\frac{\pi}{4}\right)$
$=\frac{\pi}{12}+\sqrt{2}-1-\frac{1}{\sqrt{3}}$
A1 A1

A1 cao in a suitable, exact form

ALT. I

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 3} \frac{1}{1+\sec x} \mathrm{~d} x & =\int_{\pi / 4}^{\pi / 3} \frac{\cos x}{1+\cos x} \mathrm{~d} x \\
& =\int_{\pi / 4}^{\pi / 3} \frac{1+\cos x-1}{1+\cos x} \mathrm{~d} x=\int_{\pi / 4}^{\pi / 3}\left(1-\frac{1}{1+\cos x}\right) \mathrm{d} x
\end{aligned}
$$

M1
M1

$$
=\left(\frac{\pi}{3}-\frac{\pi}{4}\right)-J
$$

Using the initial technique,

$$
\begin{aligned}
J=\int_{\pi / 4}^{\pi / 3} \frac{1-\cos x}{\sin ^{2} x} \mathrm{~d} x & =\int_{\pi / 4}^{\pi / 3}\left(\operatorname{cosec}^{2} x-\frac{\cos x}{\sin ^{2} x}\right) \mathrm{d} x \\
& =[-\cot x]_{\frac{1}{4} \pi}^{\frac{1}{3} \pi}-\int_{\sqrt{2} / 2}^{\sqrt{3} / 2} \frac{1}{s^{2}} \mathrm{~d} s \\
& =\frac{-1}{\sqrt{3}}+1+\left[\frac{1}{s}\right]_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{3}}{2}}=1-\frac{1}{\sqrt{3}}+\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{2}}
\end{aligned}
$$

M1

A1 M1 (full substn. attempt)
giving $\int_{\pi / 4}^{\pi / 3} \frac{1}{1+\sec x} \mathrm{~d} x=\frac{\pi}{12}+\sqrt{2}-1-\frac{1}{\sqrt{3}}$

A1
6

M1

M1

M1
A1
M1 A1

The M is for a method to find $\tan \left(\frac{1}{8} \pi\right)$
(iii) $\int_{0}^{\pi / 3} \frac{1}{(1+\sin x)^{2}} \mathrm{~d} x=\int_{0}^{\pi / 3} \frac{(1-\sin x)^{2}}{\cos ^{4} x} \mathrm{~d} x$

$$
=\int_{0}^{\pi / 3} \frac{1-2 \sin x+\sin ^{2} x}{\cos ^{4} x} \mathrm{~d} x=\int_{0}^{\pi / 3} \frac{2-2 \sin x-\cos ^{2} x}{\cos ^{4} x} \mathrm{~d} x \quad \text { M1 }
$$

$$
=\int_{0}^{\pi / 3} 2 \sec ^{4} x \mathrm{~d} x-\int_{0}^{\pi / 3} \frac{2 \sin x}{\cos ^{4} x} \mathrm{~d} x-\int_{0}^{\pi / 3} \sec ^{2} x \mathrm{~d} x
$$

A1
M1 multg. nr. \& dr. by $(1-\sin x)^{2}$

Must be separated into individually integrable forms *
Now $\int_{0}^{\pi / 3} \frac{2 \sin x}{\cos ^{4} x} \mathrm{~d} x=-2 \int_{1}^{1 / 2} \frac{-1}{c^{4}} \mathrm{~d} c=\left[\frac{2}{3 c^{3}}\right] \frac{1}{2}=\frac{14}{3}$ M1 A1
and $\int_{0}^{\pi / 3} \sec ^{2} x \mathrm{~d} x=[\tan x]_{0}^{\frac{1}{3} \pi}=\sqrt{3} \quad-$ Rewarded in final answer mark
$K=\int_{0}^{\pi / 3} \sec ^{4} x \mathrm{~d} x=\int_{0}^{\pi / 3} \sec ^{2} x \cdot \sec ^{2} x \mathrm{~d} x=\left[\sec ^{2} x \cdot \tan x\right]_{0}^{\frac{1}{3} \pi}-\int_{0}^{\pi / 3} 2 \sec ^{2} x \cdot \tan ^{2} x \mathrm{~d} x$
M1 A1 use of integration by parts

$$
\begin{array}{rlrl}
K & =4 \sqrt{3}-0-2 \int_{0}^{\pi / 3} \sec ^{2} x\left(\sec ^{2} x-1\right) \mathrm{d} x & \text { M1 'recognition' attempt with loop } \\
& =4 \sqrt{3}-2 K+2[\tan x]_{0}^{\frac{1}{3} \pi}=4 \sqrt{3}-2 K+2 \sqrt{3} & \\
\Rightarrow & K=2 \sqrt{3} & & \text {-- Rewarded in final answer mark } \\
\text { giving } \int_{0}^{\pi / 3} \frac{1}{(1+\sin x)^{2}} \mathrm{~d} x=3 \sqrt{3}-\frac{14}{3} & \text { A1 }
\end{array}
$$

* NB $\int\left(\frac{1+s^{2}}{c^{4}}\right) \mathrm{d} x=\int\left(\frac{c^{2}+2 s^{2}}{c^{4}}\right) \mathrm{d} x=\int \sec ^{2} x \mathrm{~d} x+\int 2 \sec ^{2} x \tan ^{2} x \mathrm{~d} x=\tan x+\frac{2}{3} \tan ^{3} x$

4 (i) $\sqrt{3+2 \sqrt{2}}=1+\sqrt{2}$ by (e.g.) squaring and comparing terms in m, n
M1 A1 (i.e. $m=n=1$)

NB A0 for $m=n=-1$ also
(ii) Existence of four roots $\alpha, \beta, \gamma, \delta$ means we must have
$\mathrm{f}(x)=(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)$
$=\left(x^{2}-[\alpha+\beta] x+\alpha \beta\right)\left(x^{2}-[\gamma+\delta] x+\gamma \delta\right) \quad$ E1 Justifying factorisation into quadratics
Since $\alpha+\beta+\gamma+\delta=0$ from coefft. of x^{3} in $\mathrm{f}(x)$
it follows that $\alpha+\beta=-(\gamma+\delta)$
Comparing the other coeffts. of $\mathrm{f}(x)$

$$
\begin{aligned}
& p q=-2 \\
& s(p-q)=-12 \\
& p+q-s^{2}=-10
\end{aligned}
$$

Use of $p+q=s^{2}-10 \Rightarrow(p+q)^{2}=\left(s^{2}-10\right)^{2}$
and $(p-q)^{2}=(p+q)^{2}-4 p q=\left(\frac{12}{s}\right)^{2}$
to get an eqn. in s only
$\Rightarrow s^{2}\left(s^{2}-10\right)^{2}+8 s^{2}-144=0$
B1

M1 (or by multiplying out)
A1 for at least 2 correct
A1 for $3^{\text {rd }}$ correct

M1

A1 (correct unsimplified)
A1 (AG) legitimately obtained
8
$\left(s^{2}-10\right)^{3}+10\left(s^{2}-10\right)^{2}+8\left(s^{2}-10\right)-64=0 \quad$ M1 attempt at cubic in $\left(s^{2}-10\right)$
i.e. $u^{3}+10 u^{2}+8 u-64=0 \Rightarrow(u-2)(u+4)(u+8)=0$

M1 finding one factor
A1 complete linear factorisation
$\Rightarrow s^{2}-10=2,-4,-8 \Rightarrow s^{2}=12,6,2 \quad$ A1 (i.e. $\Rightarrow s= \pm 2 \sqrt{3}, \pm \sqrt{6}, \pm \sqrt{2}$)

ALT.

$$
\begin{aligned}
& s^{2}\left(s^{4}-20 s^{2}+100\right)+8 s^{2}-144=0 \\
& \quad \Rightarrow s^{6}-20 s^{4}+108 s^{2}-144=0 \\
& \quad \Rightarrow\left(s^{2}-2\right)\left(s^{2}-6\right)\left(s^{2}-12\right)=0 \\
& \Rightarrow s^{2}=12,6,2 \\
& s=\sqrt{2}, \quad p=-4-3 \sqrt{2}, q=-4+3 \sqrt{2}
\end{aligned}
$$

M1 attempt at cubic in s^{2}
M1 finding one factor
A1 complete linear factorisation
(Note that taking the - ve sq.rt. simply swaps the brackets)
Or $s=\sqrt{6}, \quad p=-2-\sqrt{6}, \quad q=-2+\sqrt{6}$
Or $\quad s=2 \sqrt{3}, p=1-\sqrt{3}, \quad q=1+\sqrt{3}$
Candidates told to use the smallest value of s^{2}, so the working should proceed as follows:-
$\begin{aligned} \mathrm{f}(x)= & \left(x^{2}+x \sqrt{2}-4-3 \sqrt{2}\right)\left(x^{2}-x \sqrt{2}-4+3 \sqrt{2}\right)=0 \quad \text { M1 } \\ & \quad \text { (using } s=\sqrt{2}, t=-\sqrt{2}, p=-4-3 \sqrt{2}, q=-4+3 \sqrt{2})\end{aligned}$
Using quadratic formula on each factor:

$$
x=\frac{-\sqrt{2} \pm \sqrt{18+12 \sqrt{2}}}{2}, \frac{\sqrt{2} \pm \sqrt{18-12 \sqrt{2}}}{2}
$$

M1 A1 (A for 2 correct discriminants)

$$
\begin{aligned}
&=\frac{-\sqrt{2} \pm \sqrt{6} \sqrt{3+2 \sqrt{2}}}{2}, \frac{\sqrt{2} \pm \sqrt{6} \sqrt{3-2 \sqrt{2}}}{2} \\
&=\frac{-\sqrt{2} \pm \sqrt{6}(1+\sqrt{2})}{2}, \frac{\sqrt{2} \pm \sqrt{6}(\sqrt{2}-1)}{2} \\
& x=\frac{-\sqrt{2}+\sqrt{6}+2 \sqrt{3}}{2}, \frac{-\sqrt{2}-\sqrt{6}-2 \sqrt{3}}{2}, \frac{\sqrt{2}+\sqrt{6}-2 \sqrt{3}}{2}, \frac{\sqrt{2}-\sqrt{6}+2 \sqrt{3}}{2} \\
& \text { A1 using (i)'s result } \\
& \text { A1 all four (\& no exrect } \\
& \\
&
\end{aligned}
$$

However,
$\mathrm{f}(x)=\left(x^{2}+x \sqrt{6}-2-\sqrt{6}\right)\left(x^{2}-x \sqrt{6}-2+\sqrt{6}\right)=0$ (using $s=\sqrt{6}, t=-\sqrt{6}, p=-2-\sqrt{6}, q=-2+\sqrt{6}$)
with discriminants $14+4 \sqrt{6}=2(7+2 \sqrt{6})=\lfloor\sqrt{2}(1+\sqrt{6})\rfloor^{2}$ and $14-4 \sqrt{6}$ etc.
and $\mathrm{f}(x)=\left(x^{2}+x \sqrt{12}+1-\sqrt{3}\right)\left(x^{2}-x \sqrt{12}+1+\sqrt{3}\right)=0$

$$
\text { (using } s=2 \sqrt{3}, t=-2 \sqrt{3}, p=1-\sqrt{3}, q=1+\sqrt{3})
$$

with discriminants $8+4 \sqrt{3}=2(4+2 \sqrt{3})=\lfloor\sqrt{2}(1+\sqrt{3})\rfloor^{2}$ and $8-4 \sqrt{3}$ etc.

5 (i) If $\overrightarrow{P Q}=\overrightarrow{S R}$ then $P Q R S$ is a parallelogram
If $\overrightarrow{P Q}=\overrightarrow{S R}$ and $|\overrightarrow{P Q}|=|\overrightarrow{P S}|$ then $P Q R S$ is a rhombus $\quad \mathbf{B}$
$\overrightarrow{P Q}=\left(\begin{array}{c}1-p \\ q \\ 0\end{array}\right), \overrightarrow{P R}=\left(\begin{array}{c}r-p \\ 1 \\ 1\end{array}\right), \overrightarrow{P S}=\left(\begin{array}{c}-p \\ s \\ 1\end{array}\right), \overrightarrow{Q R}=\left(\begin{array}{c}r-1 \\ 1-q \\ 1\end{array}\right), \overrightarrow{Q S}=\left(\begin{array}{c}-1 \\ s-q \\ 1\end{array}\right)$ and $\overrightarrow{R S}=\left(\begin{array}{c}-r \\ s-1 \\ 0\end{array}\right)$
(ii) Diagonal $P R$ has eqn. $\mathbf{r}=\left(\begin{array}{l}p \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{c}r-p \\ 1 \\ 1\end{array}\right)$; diagonal $Q S$ has eqn. $\mathbf{r}=\left(\begin{array}{l}1 \\ q \\ 0\end{array}\right)+\mu\left(\begin{array}{c}-1 \\ s-q \\ 1\end{array}\right)$

M1 Good attempt at both eqns.

Diagonals intersect iff

$$
p+\lambda(r-p)=1-\mu, \lambda=q+\mu(s-q), \lambda=\mu
$$

M1
Setting $\mu=\lambda \Rightarrow p+\lambda(r-p)=1-\lambda, \lambda=q+\lambda(s-q)$ and equating for λ
M1

$$
\begin{aligned}
& \lambda=\frac{1-p}{r-p+1}=\frac{q}{1-s+q} \Rightarrow 1-s+q-p+p s-p q=r q-p q+q \\
& \quad \Rightarrow 1-s-p+p s=r q \Rightarrow(1-s)(1-p)=r q \quad \text { A1 legitimately (AG) }
\end{aligned}
$$

ALT.

Taking any 3 ('independent') vectors from (*) and showing them linearly dependent (consistently)
(ii)(a) Then $\overrightarrow{P Q}=\overrightarrow{S R}$ iff $1-p=r$ and $q=1-s$

$$
\text { i.e. iff } p+r=1 \text { and } q+s=1
$$

Centroid G has $\mathbf{g}=\left(\frac{1}{4}(p+r+1), \frac{1}{4}(q+s+1), \frac{1}{2}\right)$
while the centre of the unit cube is at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
These are the same point iff $p+r=1$ and $q+s=1$
B1
Final mark not to be awarded unless a correct "iff" argument has been made
(ii) (b) We have $p+r=1$ and $q+s=1$ as before and $\sqrt{(1-p)^{2}+q^{2}}=\sqrt{p^{2}+s^{2}+1}$ using $\overrightarrow{P S}$ from (*)

B1
$\Rightarrow 1-2 p+p^{2}+q^{2}=p^{2}+s^{2}+1 \quad$ M1 solving for p
$\Rightarrow p=\frac{q^{2}-s^{2}}{2}=\frac{(q-s)(q+s)}{2}=\frac{q-s}{2} \quad$ using $q+s=1$
Then $q+s=1$ and $q-s=2 p \Rightarrow q=\frac{1}{2}+p, r=1-p, s=\frac{1}{2}-p$
All found in terms of p
M1 A1
4
$\overrightarrow{P Q}=\left(\begin{array}{c}1-p \\ \frac{1}{2}+p \\ 0\end{array}\right), \overrightarrow{P R}=\left(\begin{array}{c}1-2 p \\ 1 \\ 1\end{array}\right), \overrightarrow{R Q}=\left(\begin{array}{c}p \\ p-\frac{1}{2} \\ -1\end{array}\right)$
B1 must all be in terms of p (ft)
so $P Q^{2}=2 p^{2}-p+\frac{5}{4}, P R^{2}=4 p^{2}-4 p+3$
and $R Q^{2}=2 p^{2}-p+\frac{5}{4} \quad$ M1 three lengths attempted
Then by the Cosine Rule,

$$
\begin{aligned}
\cos P Q R & =\frac{P Q^{2}+R Q^{2}-P R^{2}}{2 \cdot P Q \cdot R Q}=\frac{2 p-\frac{1}{2}}{2\left(2 p^{2}-p+\frac{5}{4}\right)} & \text { M1 (rearranged into cos }=\ldots \text { form }) \\
& =\frac{4 p-1}{5-4 p+8 p^{2}} & \text { A1 (AG) legitimately obtained }
\end{aligned}
$$

ALT. $\overrightarrow{R Q}=\left(\begin{array}{c}1-r \\ q-1 \\ -1\end{array}\right)=\left(\begin{array}{c}p \\ p-\frac{1}{2} \\ -1\end{array}\right)$

$$
\cos P Q R=\frac{\overrightarrow{P Q} \bullet \overrightarrow{R Q}}{|\overrightarrow{P Q}||\overrightarrow{R Q}|}=\frac{(1-p) p+\left(p+\frac{1}{2}\right)\left(p-\frac{1}{2}\right)+0}{\sqrt{(1-p)^{2}+\left(p+\frac{1}{2}\right)^{2}} \sqrt{p^{2}+\left(p-\frac{1}{2}\right)^{2}+1}}
$$

M2 use of the scalar product (correct vectors)

$$
\begin{aligned}
& =\frac{p-p^{2}+p^{2}-\frac{1}{4}}{\sqrt{(1-p)^{2}+\left(p+\frac{1}{2}\right)^{2}} \sqrt{p^{2}+\left(p-\frac{1}{2}\right)^{2}+1}}=\frac{p-\frac{1}{4}}{\sqrt{\frac{5}{4}-p+2 p^{2}} \sqrt{\frac{5}{4}-p+2 p^{2}}} \\
& =\frac{4 p-1}{5-4 p+8 p^{2}} \quad \text { A1 legitimately (AG) }
\end{aligned}
$$

For a square, adjacent sides perpr. $\Rightarrow p=\frac{1}{4}, q=\frac{3}{4}, r=\frac{3}{4}, s=\frac{1}{4} \quad$ B1
Side-length is $|\overrightarrow{P Q}|=\sqrt{\frac{5}{4}-p+2 p^{2}}=\sqrt{\frac{5}{4}-\frac{1}{4}+\frac{2}{16}}=\frac{3}{2 \sqrt{2}}$
B1

$$
\frac{3}{2 \sqrt{2}}>\frac{21}{20} \Leftarrow \frac{1}{\sqrt{2}}>\frac{7}{10} \Leftarrow 10>7 \sqrt{2} \Leftarrow 100>98 \quad \text { B1 or equivalent }
$$

(penalise incorrect direction of the logic)
ALT. (final two marks)
Side-length is $\sqrt{\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2}} \mathrm{~B} 1=\sqrt{\frac{9}{8}}=\sqrt{\frac{450}{400}}>\sqrt{\frac{441}{400}}=\frac{21}{20} \mathrm{~B} 1$

6 (i) $9 x^{2}-12 x \cos \theta+4 \equiv(3 x-2 \cos \theta)^{2}+4-4 \cos ^{2} \theta$
M1

$$
\geq 4 \sin ^{2} \theta \text { with equality when } x=\frac{2}{3} \cos \theta
$$

A1 B1
3
(the value of x giving the minimum may appear later on)
$12 x^{2} \sin \theta-9 x^{4} \equiv 4 \sin ^{2} \theta-\left(3 x^{2}-2 \sin \theta\right)^{2}$
M1

$$
\leq 4 \sin ^{2} \theta \text { with equality when } x^{2}=\frac{2}{3} \sin \theta
$$

A1 B1
(the value of x giving the maximum may appear later on)

ALT. $y=12 x^{2} \sin \theta-9 x^{4} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=24 x \sin \theta-36 x^{3}$
M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x^{2}=\frac{2}{3} \sin \theta, y=4 \sin ^{2} \theta \quad \quad$ B1 both
(ignore consideration of $x=0$; this clearly does not give a max.)
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=24 \sin \theta-108 x^{2}=-48 \sin \theta<0$ for $0<\theta<\pi \Rightarrow$ maximum
A1 must justify MAX. if using calculus
$9 x^{4}+(9-12 \sin \theta) x^{2}-12 x \cos \theta+4=0$
$\Leftrightarrow 9 x^{2}-12 x \cos \theta+4=12 x^{2} \sin \theta-9 x^{4} \quad$ B1
These two functions meet only at $4 \sin ^{2} \theta$ when $x^{2}=\frac{4}{9} \cos ^{2} \theta=\frac{2}{3} \sin \theta$

E1 explained

$\frac{4}{9}\left(1-s^{2}\right)=\frac{2}{3} s \Rightarrow 0=2 s^{2}+3 s-2=(2 s-1)(s+2) \quad$ M1 creating and solving a quadratic
$\Rightarrow \sin \theta=\frac{1}{2}, x^{2}=\frac{1}{3}$
$\Rightarrow(x, \theta)=\left(\pm \frac{1}{\sqrt{3}}, \frac{\pi}{6}\right),\left(\pm \frac{1}{\sqrt{3}}, \frac{5 \pi}{6}\right) \quad$ A1 at least two correct solutions
Checking for extraneous solutions, we find that only

$$
\left(\frac{1}{\sqrt{3}}, \frac{\pi}{6}\right) \text { and }\left(-\frac{1}{\sqrt{3}}, \frac{5 \pi}{6}\right) \text { are valid solutions } \quad \text { B1 }
$$

(ii) Vertical Asymptote $x=\theta$
$y=\frac{x(x-\theta)+\theta(x-\theta)+\theta^{2}}{x-\theta}=x+\theta+\frac{\theta^{2}}{x-\theta}$
\Rightarrow Oblique Asymptote $y=x+\theta$
B1 stated or shown on graph
(NB OAs aren't on-syllabus so allow $y \rightarrow \pm \infty$ as $x \rightarrow \pm \infty$)
$\frac{\mathrm{d} y}{\mathrm{~d} x}=1-\frac{\theta^{2}}{(x-\theta)^{2}}=0$ when \ldots
M1 method for finding TPs
$(x-\theta)^{2}=\theta^{2} \Rightarrow x=0, y=0$ or $x=2 \theta, y=4 \theta \quad$ A1 stated or shown on graph
From graph, $\frac{x^{2}}{x-\theta} \leq 0$ or $\frac{x^{2}}{x-\theta} \geq 4 \theta \quad$ B1 graph must be correct

Since $4 \theta>0$, we have $\frac{x^{2}}{4 \theta(x-\theta)} \leq 0$ or $\frac{x^{2}}{4 \theta(x-\theta)} \geq 1$
so we have $\frac{\sin ^{2} \theta \cos ^{2} x}{1+\cos ^{2} \theta \sin ^{2} x} \leq 0$ or $\frac{\sin ^{2} \theta \cos ^{2} x}{1+\cos ^{2} \theta \sin ^{2} x} \geq 1$
However, it is clear that $(0 \leq) \frac{\sin ^{2} \theta \cos ^{2} x}{1+\cos ^{2} \theta \sin ^{2} x} \leq 1$
B1
(since numerator ≤ 1 and denominator ≥ 1)
The 0 case occurs if and only if $x=0$ (on LHS) but, $\operatorname{since} \sin \theta \neq 0$,
the RHS is then non-zero (as $\cos 0=1$)

$$
\begin{array}{rlr}
\frac{\sin ^{2} \theta \cos ^{2} x}{1+\cos ^{2} \theta \sin ^{2} x}=1 & \Leftrightarrow \text { both numerator } \& \text { denominator are } 1 & \text { M1 } \\
& \Leftrightarrow \sin ^{2} \theta=1 \text { and } \cos ^{2} x=1 & \text { M1 } \\
& \Leftrightarrow \theta=\frac{\pi}{2}, x=\pi &
\end{array}
$$

ALT. For the 1 case, we want $\sin ^{2} \theta \cos ^{2} x=1+\cos ^{2} \theta \sin ^{2} x$ when $x=2 \theta$
(from previous bit)
B1
Thus $\sin ^{2} \theta \cos ^{2} 2 \theta-\cos ^{2} \theta \sin ^{2} 2 \theta=1$
$\Rightarrow(\sin \theta \cos 2 \theta-\cos \theta \sin 2 \theta)(\sin \theta \cos 2 \theta+\cos \theta \sin 2 \theta)=1$
M1
$\Rightarrow(-\sin \theta)(\sin 3 \theta)=1$ or $\left(4 \sin ^{2} \theta+1\right)\left(\sin ^{2} \theta-1\right)=0$
This can only occur when either $\sin \theta=1$ and $\sin 3 \theta=-1$

$$
\text { or } \sin \theta=-1 \text { and } \sin 3 \theta=1 \text { M1 }
$$

Since $0<\theta<\pi$, this is only satisfied when $\theta=\frac{\pi}{2}, x=\pi \mathrm{A} 1$

7 (i) Step 1: If a is not divisible by 3 then it is either one more than, or one less than, a multiple of 3 .

$$
\text { For } \begin{align*}
a=3 k \pm 1, a^{2} & =9 k^{2} \pm 6 k+1 \\
& =3\left(3 k^{2} \pm 2 k\right)+1 \quad \text { B1 (both shown } 1 \text { more than a multiple of } 3 \text {) } \tag{1}
\end{align*}
$$

Step 3: $(\sqrt{2}+\sqrt{3})^{2}=5+2 \sqrt{6}$
B1
$(\sqrt{2}+\sqrt{3})^{4}=49+20 \sqrt{6} \quad$ M1 and relating back to a, b
$\left(\frac{a}{b}\right)^{4}=10\left(\frac{a}{b}\right)^{2}-1$
A1
\times by b^{4} and rearranging gives $a^{4}+b^{4}=10 a^{2} b^{2}$
A1 legitimately (AG)
4
ALT. $a=(\sqrt{2}+\sqrt{3}) b \Rightarrow a^{2}=(5+2 \sqrt{6}) b^{2}$
B1
$\Rightarrow a^{2}+b^{2}=(6+2 \sqrt{6}) b^{2} \quad$ M1 adding b^{2} to both sides

$$
=2 \sqrt{3}(\sqrt{3}+\sqrt{2}) b^{2}=2 \sqrt{3} a b
$$

$\Rightarrow\left(a^{2}+b^{2}\right)^{2}=12 a^{2} b^{2} \Rightarrow a^{4}+b^{4}=10 a^{2} b^{2}$ A1 legitimately (AG)
Step 4: If $a=3 k$ then $b^{4}=90 k^{2} b^{2}-81 k^{4}=3\left(30 k^{2} b^{2}-27 k^{4}\right)$
Explanation that $3 \mid$ RHS $\Rightarrow 3 \mid$ LHS $\Rightarrow 3 \mid b$
E1 must be thorough
Step 5: Since $\operatorname{hcf}(a, b)=1, a$ can't be a multiple of 3 (from previous working)

B1

So both a^{2} and $a^{4} \equiv 1(\bmod 3)$

$$
\text { giving } 1+b^{4} \equiv b^{2}(\bmod 3)
$$

M1 any suitable wording
Each case $b^{2} \equiv 0, b^{2} \equiv 1$ gives $\Rightarrow \Leftarrow$
E1 carefully explained
(ii) If a is not a multiple of 5 , it is $5 k \pm 1$ or $5 k \pm 2$

B1

Squaring gives $a^{2} \equiv \pm 1 \quad\left(\right.$ and $\left.a^{4} \equiv 1\right)$
B1
$(\sqrt{6}+\sqrt{7})^{2}=13+2 \sqrt{42}$
and $(\sqrt{6}+\sqrt{7})^{4}=337+52 \sqrt{42} \quad$ M1 and relating back to a, b
so that $\left(\frac{a}{b}\right)^{4}=26\left(\frac{a}{b}\right)^{2}-1$
A1
\times by b^{4} and rearranging gives $a^{4}+b^{4}=26 a^{2} b^{2} \quad$ A1 legitimately ($\mathbf{A G}$)
Now if $a=5 k$ then $b^{4}=650 k^{2} b^{2}-625 k^{4}=5\left(130 k^{2} b^{2}-125 k^{4}\right)$
so if a is a multiple of 5 then b is also
E1
Since a, b co-prime, this doesn't happen

$$
\begin{array}{cl}
\text { so } a^{4}+b^{4}=26 a^{2} b^{2} \text { becomes } & \text { M1 considering this } \bmod 5 \\
1+b^{4} \equiv \pm b^{2} & \mathbf{A 1}
\end{array}
$$

Each case $b^{2} \equiv 0, b^{2} \equiv \pm 1$ gives $\Rightarrow \Leftarrow$
E1 carefully explained/demonstrated

8 (i) Set $u=2 t, \quad \mathrm{~d} u=2 \mathrm{~d} t$ in $\mathrm{f}(x)=\int_{1}^{x} \sqrt{\frac{t-1}{t+1}} \mathrm{~d} t$
M1 choice of substitution
$t=1, u=2$ and $t=\frac{1}{2} x, u=x$
A1 limits correctly sorted
Then $\mathrm{f}\left(\frac{1}{2} x\right)=\int_{2}^{x} \sqrt{\frac{\frac{u}{2}-1}{\frac{u}{2}+1}} \cdot \frac{1}{2} \mathrm{~d} u=\frac{1}{2} \int_{2}^{x} \sqrt{\frac{u-2}{u+2}} \mathrm{~d} u$
M1 A1 full substitution attempted; correct
and $\int_{2}^{x} \sqrt{\frac{u-2}{u+2}} \mathrm{~d} u=2 \mathrm{f}\left(\frac{1}{2} x\right)$
A1 legitimately (AG)
A 'backwards' verification approach equally ok
(ii) Set $u=v+2, \mathrm{~d} u=\mathrm{d} v$
$u=2, v=0$ and $u=x+2, v=x$
Then $2 \mathrm{f}\left(\frac{x+2}{2}\right)=\int_{0}^{x} \sqrt{\frac{v}{v+4}} \mathrm{~d} v$

M1 choice of substitution, using (i)
A1 limits correctly sorted
A1

ALT. (from the beginning)

$$
\begin{align*}
& \text { Set } u+2=2 t, \mathrm{~d} u=2 \mathrm{~d} t \\
& t=1, u=0 \text { and } t=\frac{1}{2} x+1, u=x \\
& \text { Then } \mathrm{f}\left(\frac{1}{2} x+1\right)=\int_{1}^{\frac{1}{2} x+1} \sqrt{\frac{t-1}{t+1}} \mathrm{~d} t=\int_{0}^{x} \sqrt{\frac{\frac{u+2}{2}-1}{\frac{u+2}{2}+1}} \cdot \frac{1}{2} \mathrm{~d} u \quad \text { M1 full substitution choice of substitution } \\
& \\
& =\frac{1}{2} \int_{0}^{x} \sqrt{\frac{u}{u+4}} \mathrm{~d} u
\end{align*} \text { and } 2 \mathrm{f}\left(\frac{1}{2} x+1\right)=\int_{0}^{x} \sqrt{\frac{u}{u+4}} \mathrm{~d} u \quad \text { A1 } \quad \text { (}
$$

(iii) Set $u=a t+b, \mathrm{~d} u=a \mathrm{~d} t$ $t=1, u=5$ and $t=\frac{x-b}{a}, u=x$
Then $\mathrm{f}\left(\frac{x-b}{a}\right)=\int_{1}^{\frac{x-b}{a}} \sqrt{\frac{t-1}{t+1}} \mathrm{~d} t=\int_{5}^{x} \sqrt{\frac{\frac{u-b}{a}-1}{\frac{u-b}{a}+1}} \frac{1}{a} \mathrm{~d} u$

$$
=\frac{1}{a} \int_{5}^{x} \sqrt{\frac{u-(a+b)}{u+(a-b)}} \mathrm{d} u
$$

M1 choice of substitution
A1 limits correctly sorted

M1 full substitution

A1 correct

We need $a+b=5$ and $a-b=1 \Rightarrow a=3, b=2$ M1 method for determining a, b giving $3 \mathrm{f}\left(\frac{x-2}{3}\right)=\int_{5}^{x} \sqrt{\frac{u-5}{u+1}} \mathrm{~d} u$

A1
Might also be done using two substitutions (split marks $\mathbf{3 + 3}$ if fully correct)
(iv) Set $y=u^{2}, \mathrm{~d} y=2 u \mathrm{~d} u$ $u=1, y=1$ and $u=2, y=4$

M1 choice of substitution
A1 limits correctly sorted

$$
\text { Then } \begin{array}{rll}
& \int_{1}^{2} \sqrt{\frac{u^{2}}{u^{2}+4}} u \mathrm{~d} u=\int_{1}^{4} \sqrt{\frac{y}{y+4}} \frac{1}{2} \mathrm{~d} y & \text { M1 full substitution } \\
& =\frac{1}{2} \int_{0}^{4} \sqrt{\frac{y}{y+4}} \mathrm{~d} y-\frac{1}{2} \int_{0}^{1} \sqrt{\frac{y}{y+4}} \mathrm{~d} y & \text { M1 dealing with lower limit } \\
& =\mathrm{f}\left(\frac{4+2}{2}\right)-\mathrm{f}\left(\frac{1+2}{2}\right) \quad \text { using (ii) } & \text { M1 use of (ii) } \\
& =\mathrm{f}(3)-\mathrm{f}\left(\frac{3}{2}\right) & \text { A1 }
\end{array}
$$

For those interested, $\mathrm{f}(x)=\sqrt{x^{2}-1}-2 \sinh ^{-1} \sqrt{\frac{x-1}{2}}$ or equivalent involving log forms

9
Diagram at the moment of toppling:-

Note: There could also be \uparrow and \rightarrow components of the contact force at O, but these can be ignored

$O A=A B=b$ and $A C=h \Rightarrow O C=\sqrt{b^{2}+h^{2}}$
$D E=\lambda h$ and $O D=\lambda b$
(i)

$$
\text { (O) for ladder: } \quad \begin{aligned}
k W \cdot \lambda b & =R \sqrt{b^{2}+h^{2}} \\
\Rightarrow R & =k \lambda W \frac{b}{\sqrt{b^{2}+h^{2}}}=k \lambda W \cos \alpha
\end{aligned}
$$

M1 A1

M1 A1 legitimately (AG)
(ii) Resolve \uparrow for box: $N=W+R \cos \alpha$ ${ }^{*}$ for box: $W \cdot \frac{1}{2} b+R . h \sin \alpha=N . b$
$\Rightarrow \frac{1}{2} b W+h k \lambda W \cos \alpha \sin \alpha=b\left(W+k \lambda W \cos ^{2} \alpha\right)$
$\Rightarrow \quad \frac{1}{2} b+h k \lambda \cos \alpha \sin \alpha=b+b k \lambda \cos ^{2} \alpha$
$(\times 2) \Rightarrow b \tan \alpha \cdot 2 k \lambda \cos \alpha \sin \alpha=b+2 b k \lambda \cos ^{2} \alpha$
$(\div b) \Rightarrow \quad 2 k \lambda \sin ^{2} \alpha=1+2 k \lambda \cos ^{2} \alpha$
$\Rightarrow \quad 0=1+2 k \lambda \cos 2 \alpha$

M1 A1
M1 A1
M1 M1 substituting for R, N

M1 substituting $h=b \tan \alpha$
A1 (since $c^{2}-s^{2}=\cos 2 \alpha$) legitimately (AG)
(iii) \quad Resolve \rightarrow for box: $\quad F=R \sin \alpha$

Friction Law: $F \leq \mu N$

$$
\begin{aligned}
& \Rightarrow \quad \mu \geq \frac{R \sin \alpha}{W+R \cos \alpha} \\
& \Rightarrow \quad \mu \geq \frac{k \lambda W \cos \alpha \sin \alpha}{W+k \lambda W \cos ^{2} \alpha} \\
& \Rightarrow \quad \mu \geq \frac{k \lambda 2 \sin \alpha \cos \alpha}{2+k \lambda 2 \cos ^{2} \alpha}=\frac{k \lambda \sin 2 \alpha}{2+k \lambda(1+\cos 2 \alpha)}
\end{aligned}
$$

B1

B1 used, not just stated ($\mathbf{B 0}$ for $F=\mu N$)
M1 substituting for F and N
M1 substituting for R
M1 use of double-angle formulae

Using (ii)'s result, $1=-2 k \lambda \cos 2 \alpha \Rightarrow 2=-4 k \lambda \cos 2 \alpha$

$$
\begin{aligned}
\Rightarrow & \mu \\
(\div k \lambda) \Rightarrow \quad \mu & \frac{k \lambda \sin 2 \alpha}{-4 k \lambda \cos 2 \alpha+k \lambda+k \lambda \cos 2 \alpha} \\
-4 \cos 2 \alpha+1+\cos 2 \alpha & =\frac{\sin 2 \alpha}{1-3 \cos 2 \alpha} \quad \text { A1 legitimately (AG) }
\end{aligned}
$$

$$
10 \quad x=u t \sin \alpha \quad y=u t \cos \alpha-\frac{1}{2} g t^{2} \quad \text { B1 both }
$$

Setting $t=\frac{x}{u \sin \alpha}$ and substituting into y formula
M1
$\Rightarrow y=x \cot \alpha-\frac{1}{2} g \frac{x^{2}}{u^{2} \sin ^{2} \alpha}$

$$
=x \cot \alpha-\frac{1}{2} g \frac{x^{2}}{u^{2}}\left(1+\cot ^{2} \alpha\right)
$$

M1 use of $\operatorname{cosec}^{2} \alpha=1+\cot ^{2} \alpha$
Setting $x=h \tan \beta$ and $y=h$
$\Rightarrow h=c h \tan \beta-\frac{g h^{2}}{2 u^{2}} \tan ^{2} \beta\left(1+c^{2}\right) \Rightarrow($ since $h \neq 0) 1=c \tan \beta-\frac{g h}{2 u^{2}} \tan ^{2} \beta\left(1+c^{2}\right)$
$\times k=\frac{2 u^{2}}{g h} \Rightarrow k=c k \tan \beta-\left(1+c^{2}\right) \tan ^{2} \beta$
M1 use of k
$\div \tan ^{2} \beta \Rightarrow k \cot ^{2} \beta=c k \cot \beta-1-c^{2}$

$$
\Rightarrow c^{2}-c k \cot \beta+1+k \cot ^{2} \beta=0
$$

A1 legitimately (AG)
(i) Considering this quadratic in c :
sum of roots: $\quad \cot \alpha_{1}+\cot \alpha_{2}=k \cot \beta$
B1 must be clearly shown (AG)
product of roots: $\quad \cot \alpha_{1} \cot \alpha_{2}=1+k \cot ^{2} \beta$
B1 stated or used somewhere
$\cot \left(\alpha_{1}+\alpha_{2}\right)=\frac{1}{\tan \left(\alpha_{1}+\alpha_{2}\right)}=\frac{1-\tan \alpha_{1} \tan \alpha_{2}}{\tan \alpha_{1}+\tan \alpha_{2}} \quad$ M1 $\tan / \cot (A+B)$ result
$=\frac{\cot \alpha_{1} \cot \alpha_{2}-1}{\cot \alpha_{1}+\cot \alpha_{2}}$
$=\frac{1+k \cot ^{2} \beta-1}{k \cot \beta}=\cot \beta$
M1 everything in terms of cots
and it follows that $\alpha_{1}+\alpha_{2}=\beta\left(\because \beta, \alpha_{1}, \alpha_{2}\right.$ all acute $)$
E1 (AG) must be justified

Still considering the quadratic in c :
For real c, discriminant $\Delta=(k \cot \beta)^{2}-4\left(1+k \cot ^{2} \beta\right) \geq 0 \mathbf{M 1}$ considering discriminant
$\Rightarrow\left(k^{2}-4 k\right) \cot ^{2} \beta \geq 4 \Rightarrow k^{2}-4 k \geq 4 \tan ^{2} \beta$

$$
\begin{array}{r}
\Rightarrow(k-2)^{2} \geq 4 \tan ^{2} \beta+4=4 \sec ^{2} \beta \quad \text { M1 completing the sq } \\
\text { trig. identity used } \\
(\ldots \text { ignore } k \leq- \text { ve thing) } \quad \text { A1 legitimately (AG) }
\end{array}
$$

(ii) $\dot{y}=u \cos \alpha-g t \Rightarrow t=\frac{u \cos \alpha}{g}$ at max. height

$$
\Rightarrow H=\frac{u^{2} \cos ^{2} \alpha}{2 g}
$$

$$
h \leq H \Rightarrow 2 g h \leq u^{2} \cos ^{2} \alpha
$$

$$
\Rightarrow 2 \times \frac{2 u^{2}}{k} \leq u^{2} \cos ^{2} \alpha
$$

$$
\Rightarrow k \geq 4 \sec ^{2} \alpha
$$

M1 stated or used in y-formula

A1 (give M1 A1 if result correctly quoted)
M1 comparing h with H
M1 substituting for k
A1 (AG) legitimately obtained

11 (i) $\mathrm{P}(\mathrm{HH})=p^{2} \quad \mathrm{P}(\mathrm{TT})=q^{2} \quad \mathrm{P}(\mathrm{TH}$ or HT$)=2 p q$
B1 seen at any stage
$\mathrm{P}($ first $n-1$ rounds indecisive $)=(2 p q)^{n-1}$
\Rightarrow Decision at round $n=(2 p q)^{n-1} \times \mathrm{P}(\mathrm{HH}$ or TT)
M1

$$
=(2 p q)^{n-1}\left(p^{2}+q^{2}\right)
$$

A1 legitimately (AG)
Let $d=\mathrm{P}\left(\right.$ decision on or before $n^{\text {th }}$ round $)$
$=1-\mathrm{P}\left(\right.$ decision after $n^{\text {th }}$ round $) \quad$ M1 with working
$=1-\left\{(2 p q)^{n}\left(p^{2}+q^{2}\right)+(2 p q)^{n+1}\left(p^{2}+q^{2}\right)+(2 p q)^{n+2}\left(p^{2}+q^{2}\right)+\ldots\right\}$
$=1-(2 p q)^{n}\left(p^{2}+q^{2}\right)\left\{1+(2 p q)+(2 p q)^{2}+\ldots\right\}$
$=1-(2 p q)^{n}\left(p^{2}+q^{2}\right) \times \frac{1}{1-2 p q} \quad$ M1 use of $\mathrm{S}_{\infty}(\mathrm{GP})$
since $p^{2}+q^{2}=(p+q)^{2}-2 p q=1-2 p q$
$=1-(2 p q)^{n}$

A1
M1 A1 method; correct or via $(\sqrt{p}-\sqrt{q})^{2} \geq 0 \Rightarrow p+q-2 \sqrt{p q} \geq 0$ etc.
or via $p q=p(1-p) \leq \frac{1}{4}$ by calculus/completing the square $\mathbf{E} 1$ inequality concluded
and $d=1-(2 p q)^{n}=1-2^{n}(\sqrt{p q})^{2 n} \geq 1-2^{n}\left(\frac{1}{2}\right)^{2 n}=1-\frac{1}{2^{n}} \quad$ A1 legitimately (AG)
(ii) $\mathrm{P}\left(\right.$ decision at $1^{\text {st }}$ round $)=p^{3}+q^{3}$ or $1-3 p q$
$\mathrm{P}\left(\right.$ decision at $2^{\text {nd }}$ round $)=3 p^{2} q \cdot p^{2}+3 q^{2} p \cdot q^{2}$
So overall prob. is $\mathrm{P}=p^{3}+q^{3}+3 p^{4} q+3 p q^{4}$

$$
\begin{aligned}
& \mathrm{P}= p^{3}+(1-p)^{3}+3\left(p^{4}-p^{5}\right)+3 p(1-p)^{4} \\
&= 1-9 p^{2}+18 p^{3}-9 p^{4} \\
& \frac{\mathrm{dP}}{\mathrm{~d} p}=-18 p+54 p^{2}-36 p^{3} \\
&=-18 p(2 p-1)(p-1) \\
& \quad \text { giving } p=0, \frac{1}{2}, 1
\end{aligned}
$$

B1

M1 Good attempt at two cases
A1

M1 a polynomial in p only
A1
M1
M1 and set to zero
A1

Since P is a positive cubic, 0 and 1 give maxima, while $\frac{1}{2}$ gives a (local) minimum
E1 justification
So, on $[0,1], p=\frac{1}{2}$ and $\mathrm{P}_{\text {min }}=\frac{7}{16}$

